5729 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.087$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Amino-2-methylquinolinium hydrogensulfate dihydrate

Mostafa M. Amini,* Gholamhossein Mohammadnezhad Sh. and Hamid Reza Khavasi

Department of Chemistry, Shahid Beheshti University, Evin, Tehran 1983963113, Iran

Correspondence e-mail: m-pouramini@cc.sbu.ac.ir

Received 19 November 2007; accepted 28 November 2007

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.060; wR factor = 0.182; data-to-parameter ratio = 17.1.

In the title compound, $C_{10}H_{11}N_2^{+}HSO_4^{-}2H_2O$, the asymmetric unit contains two protonated 4-aminoquinoline cations and two hydrogen sulfate anions with four water molecules. The crystal structure involves extensive $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonding.

Related literature

For related literature, see: Amini *et al.* (2007*a*,*b*); Repicky *et al.* (2005).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_{10}H_{11}N_2^{+} \cdot HSO_4^{-} \cdot 2H_2O} \\ M_r = 292.32 \\ {\rm Triclinic}, P\overline{1} \\ a = 10.1585 \ (9) \ {\rm \mathring{A}} \\ b = 11.2131 \ (9) \ {\rm \mathring{A}} \\ c = 13.3545 \ (11) \ {\rm \mathring{A}} \\ \alpha = 68.283 \ (6)^\circ \\ \beta = 76.355 \ (7)^\circ \end{array}$

 $\gamma = 67.949 \ (6)^{\circ}$ $V = 1301.51 \ (19) \ Å^3$ Z = 4Mo K\alpha radiation $\mu = 0.27 \ \text{mm}^{-1}$ $T = 120 \ (2) \ \text{K}$ $0.5 \times 0.15 \times 0.12 \ \text{mm}$

Data collection

Stoe IPDSII diffractometer

Absorption correction: numerical

(X-SHAPE; Stoe & Cie, 2005) $T_{\min} = 0.950, T_{\max} = 0.970$ 16357 measured reflections 7008 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.182$ S = 1.067008 reflections 409 parameters H atoms treated by a mixture of

 $\begin{array}{l} \text{independent and constrained} \\ \text{refinement} \\ \Delta \rho_{\text{max}} = 0.39 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{\text{min}} = -0.99 \text{ e } \text{ Å}^{-3} \end{array}$

Table 1

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1B \cdot \cdot \cdot O7^{i}$	0.89 (3)	2.16 (3)	2.981 (3)	154 (3)
$N1-H1C\cdots O7^{ii}$	0.88 (3)	2.26 (3)	3.049 (3)	149 (3)
$N1 - H1C \cdot \cdot \cdot O8^{ii}$	0.88 (3)	2.58 (3)	3.374 (3)	151 (3)
$O1 - H1D \cdots O9$	0.88 (4)	1.61 (4)	2.485 (3)	177 (5)
$N2-H2B\cdots O11^{iii}$	0.95 (3)	1.88 (3)	2.819 (3)	172 (3)
$N3-H3B\cdots O3^{iv}$	0.90 (3)	2.03 (3)	2.902 (3)	163 (3)
N3−H3C···O3	0.87 (3)	2.54 (3)	3.177 (3)	132 (3)
N3-H3C···O4	0.87 (3)	2.20 (3)	3.034 (3)	162 (3)
$N4 - H4B \cdot \cdot \cdot O12$	0.90 (3)	1.87 (3)	2.753 (3)	169 (3)
O5-H5···O10	0.94 (4)	1.58 (4)	2.523 (3)	174 (5)
O9−H9D···O8	0.84 (4)	1.91 (4)	2.736 (3)	169 (4)
$O9-H9E\cdots O6^{v}$	0.81 (4)	1.98 (4)	2.783 (3)	178 (5)
O10-H10A···O4	0.89 (4)	1.81 (4)	2.695 (3)	175 (3)
$O10-H10B\cdots O2^{vi}$	0.83 (4)	1.93 (4)	2.745 (3)	169 (4)
$O11-H11B\cdots O2^{vi}$	0.82 (4)	2.04 (4)	2.843 (3)	167 (5)
O11−H11C···O7	0.85 (4)	1.94 (4)	2.787 (3)	172 (3)
$O12-H12B\cdots O3^{vii}$	0.86 (4)	1.98 (4)	2.823 (3)	166 (4)
$O12-H12C\cdots O11^{ii}$	0.92 (4)	1.90 (4)	2.823 (3)	177 (4)

Symmetry codes: (i) -x - 1, -y, -z + 1; (ii) x - 1, y + 1, z; (iii) x, y + 1, z; (iv) -x, -y + 1, -z; (v) -x, -y, -z + 1; (vi) -x, -y, -z; (vii) x - 1, y, z.

Data collection: X-RED32 (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge Shahid Beheshti University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2193).

References

Amini, M. M., Mohammadnezhad, G. S. & Khavasi, H. R. (2007b). Acta Cryst. E63, m2516.

Amini, M. M., Nasiri, S. & Ng, S. W. (2007a). Acta Cryst. E63, o1361–o1362. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Repicky, A., Jantova, S., Theiszova, M. & Milata, V. (2005). Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Rep. 49, 345–347.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe & Cie (2005). X-RED32 (Version 1.28b), X-SHAPE (Version 2.05) and X-AREA (Version 1.31). Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (2008). E64, o203 [doi:10.1107/S1600536807063982]

4-Amino-2-methylquinolinium hydrogensulfate dihydrate

M. M. Amini, G. Mohammadnezhad Sh. and H. R. Khavasi

Comment

In continuation of our research on the structure determination of simple ammonium salts (Amini *et al.*, 2007*a*) as precursors for synthesis of double sulfate (Amini *et al.*, 2007*b*), we have found that the this compound (Fig. 1) forms structures with extended hydrogen bonding in the presence of water molecules. From the packing diagram (Fig. 2), it seems that the intermolecular and intramolecular N—H···O and O—H···O and O—H···O hydrogen bonds (Table 1) are effective in the stabilization of the crystal structure. These compounds could be classified as an outstanding model system for polymers with higher dimensional hydrogen bonding. 4-aminoquinoline derivatives have cytotoxic activity (Repicky *et al.*, 2005), so determination of molecular structure of these compounds could be beneficial. As it is shown in Fig. 2, the quinoline rings form π bonding stacks. The closest contact distance between adjacent aromatic rings is 3.328 (3) A°.

Experimental

2-methylquinolin-4-amine (1.58 g, 0.01 mol) was dissolved in 30 ml dichloromethane. Dropwise addition of concentrated sulfuric acid (0.98 g, 0.01 mol) resulted in a white precipitate which was filtered and dissolved in methanol. Needle shape crystals were grown by slow evaporation of a methanol solution at room temperature.

Refinement

The N-bond and O-bond H atoms were located in a difference map and their positions were freely refined. Other hydrogen atoms were refined using a riding model (C—H = $0.93-0.96 \text{ A}^\circ$) with their displacement parameters set at 1.2 times U_{eq} of the parent atom.

Figures

Fig. 1. Molecular structure. Displacement ellipsoids are drawn at the 30% probability level

Fig. 2. Unit-cell packing diagram as viewed down the a-direction. Hydrogen bonds are shown as dashed lines.

4-Amino-2-methylquinolinium hydrogensulfate dihydrate

Crystal data

$C_{10}H_{11}N_2^+ HSO_4^- 2H_2O$	Z = 4
$M_r = 292.32$	$F_{000} = 616$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.492 {\rm Mg m}^{-3}$
a = 10.1585 (9) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 11.2131 (9) Å	Cell parameters from 2500 reflections
c = 13.3545 (11) Å	$\theta = 1.7 - 29.2^{\circ}$
$\alpha = 68.283 \ (6)^{\circ}$	$\mu = 0.27 \text{ mm}^{-1}$
$\beta = 76.355 \ (7)^{\circ}$	T = 120 (2) K
$\gamma = 67.949 \ (6)^{\circ}$	Needle, colorless
$V = 1301.51 (19) \text{ Å}^3$	$0.5\times0.15\times0.12~mm$

Data collection

Stoe IPDSII diffractometer	$R_{\rm int} = 0.087$
ω scans	$\theta_{max} = 29.2^{\circ}$
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005)	$\theta_{\min} = 1.7^{\circ}$
$T_{\min} = 0.950, \ T_{\max} = 0.970$	$h = -13 \rightarrow 13$
16357 measured reflections	$k = -15 \rightarrow 15$
7008 independent reflections	$l = -18 \rightarrow 16$
5729 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0853P)^2 + 1.1102P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.060$	$(\Delta/\sigma)_{\rm max} = 0.019$
$wR(F^2) = 0.182$	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.06	$\Delta \rho_{min} = -0.99 \text{ e } \text{\AA}^{-3}$
7008 reflections	Extinction correction: none
409 parameters	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	-0.2667 (2)	0.3412 (2)	0.37942 (17)	0.0230 (4)
H1A	-0.1789	0.3565	0.3583	0.028*
C2	-0.2725 (2)	0.2116 (2)	0.42028 (19)	0.0251 (4)
H2A	-0.1882	0.1389	0.4268	0.03*
C3	-0.4052 (2)	0.1875 (2)	0.45255 (19)	0.0251 (4)
H3A	-0.408	0.0991	0.48	0.03*
C4	-0.5305 (2)	0.2943 (2)	0.44357 (17)	0.0228 (4)
H4A	-0.6174	0.2772	0.4648	0.027*
C5	-0.5292 (2)	0.4296 (2)	0.40258 (16)	0.0206 (4)
C6	-0.6557 (2)	0.5461 (2)	0.39237 (17)	0.0208 (4)
C7	-0.6404 (2)	0.6757 (2)	0.34890 (17)	0.0228 (4)
H7	-0.7215	0.7519	0.3411	0.027*
C8	-0.5072 (2)	0.6914 (2)	0.31778 (17)	0.0217 (4)
C9	-0.4852 (3)	0.8274 (2)	0.27189 (19)	0.0274 (5)
H9C	-0.4342	0.8368	0.2005	0.033*
H9B	-0.4311	0.8351	0.3179	0.033*
H9A	-0.5764	0.8973	0.2679	0.033*
C10	-0.3942 (2)	0.4510 (2)	0.36953 (17)	0.0205 (4)
C11	-0.7437 (2)	0.6655 (2)	0.12158 (18)	0.0240 (4)
H11A	-0.8339	0.6553	0.1415	0.029*
C12	-0.7303 (2)	0.7924 (2)	0.08060 (19)	0.0268 (4)
H12A	-0.8116	0.8683	0.0736	0.032*
C13	-0.5935 (2)	0.8088 (2)	0.04894 (19)	0.0257 (4)
H13	-0.5854	0.8953	0.0208	0.031*
C14	-0.4726 (2)	0.6974 (2)	0.05956 (17)	0.0230 (4)
H14	-0.3832	0.7093	0.0386	0.028*
C15	-0.4823 (2)	0.5647 (2)	0.10199 (16)	0.0203 (4)
C16	-0.3599 (2)	0.4439 (2)	0.11442 (17)	0.0202 (4)
C17	-0.3833 (2)	0.3176 (2)	0.15913 (17)	0.0217 (4)
H17	-0.3055	0.2385	0.1688	0.026*
C18	-0.5200 (2)	0.3094 (2)	0.18876 (17)	0.0216 (4)
C19	-0.5493 (2)	0.1767 (2)	0.23516 (18)	0.0253 (4)
H19A	-0.4617	0.1044	0.253	0.03*
H19B	-0.5889	0.1641	0.1827	0.03*
H19C	-0.6159	0.1767	0.2995	0.03*
C20	-0.6205 (2)	0.5506 (2)	0.13349 (17)	0.0207 (4)
N1	-0.7861 (2)	0.5326 (2)	0.42328 (17)	0.0264 (4)
H1B	-0.799 (3)	0.452 (3)	0.450 (2)	0.035 (8)*
H1C	-0.863 (3)	0.604 (3)	0.421 (2)	0.034 (8)*
N2	-0.38895 (19)	0.58169 (19)	0.32826 (15)	0.0215 (4)
H2B	-0.297 (3)	0.591 (3)	0.304 (2)	0.033 (8)*
N3	-0.2264 (2)	0.4497 (2)	0.08604 (16)	0.0241 (4)
H3B	-0.206 (3)	0.528 (3)	0.056 (3)	0.041 (9)*
H3C	-0.156 (3)	0.375 (3)	0.090 (2)	0.030 (7)*
N4	-0.63363 (19)	0.42260 (19)	0.17560 (15)	0.0217 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H4B	-0.724 (3)	0.421 (3)	0.197 (2)	0.024 (7)*
01	0.21598 (18)	0.09186 (18)	0.12957 (15)	0.0304 (4)
H1D	0.174 (4)	0.085 (4)	0.196 (3)	0.049 (10)*
02	0.19440 (18)	0.16254 (17)	-0.05753 (13)	0.0285 (4)
O3	0.11031 (19)	0.33038 (17)	0.03498 (15)	0.0316 (4)
O4	-0.02002 (17)	0.17733 (17)	0.07138 (14)	0.0279 (4)
O5	-0.21953 (18)	-0.06596 (18)	0.35374 (15)	0.0299 (4)
Н5	-0.169 (4)	-0.059 (4)	0.284 (3)	0.054 (10)*
O6	-0.20017 (18)	-0.15065 (18)	0.54201 (14)	0.0307 (4)
07	-0.10350 (19)	-0.30542 (17)	0.43617 (14)	0.0306 (4)
08	0.01481 (18)	-0.14707 (19)	0.41604 (15)	0.0328 (4)
09	0.1039 (3)	0.0757 (2)	0.31884 (16)	0.0445 (5)
H9D	0.080 (4)	0.007 (4)	0.356 (3)	0.056 (11)*
H9E	0.133 (4)	0.098 (4)	0.358 (3)	0.047 (10)*
O10	-0.0982 (2)	-0.0478 (2)	0.16311 (16)	0.0396 (5)
H10A	-0.073 (4)	0.026 (4)	0.129 (3)	0.050 (10)*
H10B	-0.127 (4)	-0.073 (3)	0.124 (3)	0.042 (9)*
O11	-0.12512 (18)	-0.36765 (18)	0.25826 (15)	0.0276 (4)
H11C	-0.112 (3)	-0.346 (3)	0.309 (3)	0.038 (8)*
H11B	-0.137 (4)	-0.303 (4)	0.203 (3)	0.070 (13)*
012	-0.90519 (19)	0.4039 (2)	0.21908 (16)	0.0316 (4)
H12B	-0.916 (4)	0.386 (4)	0.165 (3)	0.058 (11)*
H12C	-0.979 (4)	0.478 (4)	0.231 (3)	0.063 (11)*
S1	0.12067 (5)	0.19469 (5)	0.04176 (4)	0.02081 (14)
S2	-0.12161 (5)	-0.17207 (5)	0.44180 (4)	0.02107 (14)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0200 (10)	0.0298 (11)	0.0256 (10)	-0.0120 (8)	-0.0022 (8)	-0.0116 (8)
C2	0.0199 (10)	0.0276 (11)	0.0317 (11)	-0.0074 (8)	-0.0033 (8)	-0.0137 (9)
C3	0.0260 (11)	0.0250 (10)	0.0304 (11)	-0.0135 (9)	-0.0012 (8)	-0.0111 (8)
C4	0.0205 (10)	0.0282 (11)	0.0258 (10)	-0.0132 (8)	-0.0009 (8)	-0.0108 (8)
C5	0.0196 (9)	0.0262 (10)	0.0220 (9)	-0.0122 (8)	-0.0019 (7)	-0.0095 (8)
C6	0.0168 (9)	0.0281 (10)	0.0224 (9)	-0.0096 (8)	-0.0002 (7)	-0.0118 (8)
C7	0.0223 (10)	0.0237 (10)	0.0258 (10)	-0.0077 (8)	-0.0040 (8)	-0.0102 (8)
C8	0.0222 (10)	0.0240 (10)	0.0228 (9)	-0.0099 (8)	-0.0033 (7)	-0.0086 (8)
C9	0.0317 (12)	0.0254 (11)	0.0297 (11)	-0.0148 (9)	-0.0041 (9)	-0.0076 (8)
C10	0.0197 (9)	0.0247 (10)	0.0230 (9)	-0.0109 (8)	-0.0022 (7)	-0.0102 (8)
C11	0.0184 (9)	0.0310 (11)	0.0278 (10)	-0.0109 (8)	-0.0033 (8)	-0.0113 (8)
C12	0.0213 (10)	0.0281 (11)	0.0329 (11)	-0.0059 (8)	-0.0057 (8)	-0.0121 (9)
C13	0.0266 (11)	0.0245 (10)	0.0307 (11)	-0.0120 (9)	-0.0034 (9)	-0.0098 (8)
C14	0.0213 (10)	0.0275 (10)	0.0253 (10)	-0.0126 (8)	-0.0030 (8)	-0.0086 (8)
C15	0.0192 (9)	0.0264 (10)	0.0212 (9)	-0.0112 (8)	-0.0019 (7)	-0.0101 (8)
C16	0.0178 (9)	0.0268 (10)	0.0225 (9)	-0.0113 (8)	-0.0015 (7)	-0.0109 (8)
C17	0.0176 (9)	0.0252 (10)	0.0278 (10)	-0.0091 (8)	-0.0035 (8)	-0.0115 (8)
C18	0.0201 (9)	0.0260 (10)	0.0242 (10)	-0.0121 (8)	-0.0025 (7)	-0.0091 (8)
C19	0.0258 (10)	0.0272 (11)	0.0288 (11)	-0.0154 (9)	-0.0009 (8)	-0.0097 (8)

C20	0.0192 (9)	0.0251 (10)	0.0228 (9)	-0.0102 (8)	-0.0035 (7)	-0.0092 (8)
N1	0.0177 (9)	0.0285 (10)	0.0355 (10)	-0.0099 (8)	-0.0012 (7)	-0.0112 (8)
N2	0.0199 (8)	0.0259 (9)	0.0248 (8)	-0.0121 (7)	-0.0015 (7)	-0.0106 (7)
N3	0.0160 (9)	0.0269 (10)	0.0325 (10)	-0.0104 (8)	-0.0011 (7)	-0.0101 (8)
N4	0.0171 (8)	0.0292 (9)	0.0255 (9)	-0.0130 (7)	-0.0011 (6)	-0.0109 (7)
01	0.0226 (8)	0.0384 (10)	0.0315 (9)	-0.0084 (7)	-0.0048 (7)	-0.0127 (7)
O2	0.0302 (8)	0.0337 (9)	0.0284 (8)	-0.0149 (7)	0.0030 (6)	-0.0162 (7)
O3	0.0305 (9)	0.0282 (8)	0.0435 (10)	-0.0172 (7)	0.0046 (7)	-0.0167 (7)
O4	0.0183 (7)	0.0330 (9)	0.0387 (9)	-0.0157 (7)	-0.0021 (6)	-0.0111 (7)
O5	0.0238 (8)	0.0329 (9)	0.0346 (9)	-0.0071 (7)	-0.0045 (7)	-0.0135 (7)
O6	0.0300 (9)	0.0380 (9)	0.0305 (8)	-0.0175 (7)	0.0027 (7)	-0.0148 (7)
O7	0.0325 (9)	0.0268 (8)	0.0367 (9)	-0.0127 (7)	-0.0027 (7)	-0.0121 (7)
08	0.0206 (8)	0.0443 (10)	0.0398 (10)	-0.0194 (7)	-0.0011 (7)	-0.0124 (8)
09	0.0656 (14)	0.0587 (13)	0.0308 (10)	-0.0463 (12)	0.0001 (9)	-0.0143 (9)
O10	0.0614 (13)	0.0439 (11)	0.0288 (9)	-0.0365 (10)	-0.0023 (8)	-0.0099 (8)
011	0.0253 (8)	0.0320 (9)	0.0328 (9)	-0.0150 (7)	-0.0018 (7)	-0.0130 (7)
O12	0.0208 (8)	0.0380 (10)	0.0445 (10)	-0.0133 (7)	-0.0023 (7)	-0.0191 (8)
S1	0.0171 (3)	0.0242 (3)	0.0272 (3)	-0.0123 (2)	-0.00033 (19)	-0.0103 (2)
S2	0.0170 (3)	0.0253 (3)	0.0263 (3)	-0.0114 (2)	-0.00057 (19)	-0.0105 (2)

Geometric parameters (Å, °)

C1—C2	1.369 (3)	C16—C17	1.407 (3)
C1-C10	1.405 (3)	C17—C18	1.380 (3)
C1—H1A	0.93	С17—Н17	0.93
C2—C3	1.411 (3)	C18—N4	1.344 (3)
C2—H2A	0.93	C18—C19	1.499 (3)
C3—C4	1.374 (3)	C19—H19A	0.96
С3—НЗА	0.93	C19—H19B	0.96
C4—C5	1.414 (3)	С19—Н19С	0.96
C4—H4A	0.93	C20—N4	1.380 (3)
C5—C10	1.420 (3)	N1—H1B	0.89 (3)
C5—C6	1.437 (3)	N1—H1C	0.89 (3)
C6—N1	1.339 (3)	N2—H2B	0.95 (3)
С6—С7	1.406 (3)	N3—H3B	0.90 (3)
С7—С8	1.376 (3)	N3—H3C	0.86 (3)
С7—Н7	0.93	N4—H4B	0.90 (3)
C8—N2	1.348 (3)	O1—S1	1.5293 (18)
С8—С9	1.500 (3)	O1—H1D	0.87 (4)
С9—Н9С	0.96	O2—S1	1.4601 (17)
С9—Н9В	0.96	O3—S1	1.4548 (16)
С9—Н9А	0.96	O4—S1	1.4568 (15)
C10—N2	1.379 (3)	O5—S2	1.5543 (18)
C11—C12	1.370 (3)	O5—H5	0.94 (4)
C11—C20	1.408 (3)	O6—S2	1.4406 (17)
C11—H11A	0.93	O7—S2	1.4646 (17)
C12—C13	1.414 (3)	O8—S2	1.4536 (15)
C12—H12A	0.93	O9—H9D	0.84 (4)
C13—C14	1.374 (3)	O9—H9E	0.81 (4)

C13—H13	0.93	O10—H10A	0.88 (4)
C14—C15	1.415 (3)	O10—H10B	0.82 (3)
C14—H14	0.93	O11—H11C	0.85 (3)
C15—C20	1.419 (3)	O11—H11B	0.82 (4)
C15—C16	1.440 (3)	O12—H12B	0.86 (4)
C16—N3	1.339 (2)	O12—H12C	0.92 (4)
C2-C1-C10	119.60 (19)	N3—C16—C17	120.0 (2)
C2—C1—H1A	120.2	N3—C16—C15	121.66 (19)
C10-C1-H1A	120.2	C17—C16—C15	118.32 (18)
C1—C2—C3	120.6 (2)	C18—C17—C16	121.0 (2)
C1—C2—H2A	119.7	С18—С17—Н17	119.5
C3—C2—H2A	119.7	С16—С17—Н17	119.5
C4—C3—C2	120.19 (19)	N4—C18—C17	120.30 (19)
С4—С3—НЗА	119.9	N4—C18—C19	117.20 (18)
С2—С3—НЗА	119.9	C17—C18—C19	122.5 (2)
C3—C4—C5	121.01 (19)	С18—С19—Н19А	109.5
C3—C4—H4A	119.5	C18—C19—H19B	109.5
C5—C4—H4A	119.5	H19A—C19—H19B	109.5
C4—C5—C10	117.63 (19)	C18—C19—H19C	109.5
C4—C5—C6	124.08 (18)	H19A—C19—H19C	109.5
C10—C5—C6	118.30 (18)	H19B—C19—H19C	109.5
N1—C6—C7	120.1 (2)	N4—C20—C11	119.97 (18)
N1—C6—C5	121.16 (19)	N4—C20—C15	119.33 (19)
C7—C6—C5	118.71 (18)	C11—C20—C15	120.70 (19)
C8—C7—C6	120.9 (2)	C6—N1—H1B	122 (2)
С8—С7—Н7	119.6	C6—N1—H1C	120.9 (19)
С6—С7—Н7	119.6	H1B—N1—H1C	117 (3)
N2—C8—C7	120.14 (19)	C8—N2—C10	122.78 (17)
N2—C8—C9	116.95 (18)	C8—N2—H2B	121.3 (18)
С7—С8—С9	122.9 (2)	C10—N2—H2B	115.9 (18)
С8—С9—Н9С	109.5	C16—N3—H3B	123 (2)
С8—С9—Н9В	109.5	C16—N3—H3C	118.9 (19)
Н9С—С9—Н9В	109.5	H3B—N3—H3C	118 (3)
С8—С9—Н9А	109.5	C18—N4—C20	122.61 (17)
Н9С—С9—Н9А	109.5	C18—N4—H4B	122.8 (17)
Н9В—С9—Н9А	109.5	C20—N4—H4B	114.6 (17)
N2-C10-C1	119.84 (18)	S1—O1—H1D	114 (2)
N2	119.20 (19)	S2—O5—H5	111 (2)
C1—C10—C5	120.96 (19)	H9D—O9—H9E	109 (4)
C12—C11—C20	119.83 (19)	H10A—O10—H10B	114 (3)
C12—C11—H11A	120.1	H11C—O11—H11B	111 (3)
C20—C11—H11A	120.1	H12B—O12—H12C	111 (3)
C11—C12—C13	120.4 (2)	O3—S1—O4	110.45 (10)
C11—C12—H12A	119.8	O3—S1—O2	111.62 (10)
C13—C12—H12A	119.8	O4—S1—O2	112.86 (10)
C14—C13—C12	120.2 (2)	O3—S1—O1	108.74 (10)
C14—C13—H13	119.9	O4—S1—O1	108.47 (10)
С12—С13—Н13	119.9	O2—S1—O1	104.41 (10)
C13—C14—C15	120.93 (19)	O6—S2—O8	113.87 (10)

C13—C14—H14	119.5	O6—S2—O7	112.78 (10)
C15—C14—H14	119.5	O8—S2—O7	110.74 (11)
C14—C15—C20	117.89 (19)	O6—S2—O5	104.17 (10)
C14—C15—C16	123.65 (18)	O8—S2—O5	108.13 (10)
C20—C15—C16	118.47 (18)	O7—S2—O5	106.56 (10)
C10—C1—C2—C3	0.0 (3)	C13—C14—C15—C16	179.5 (2)
C1—C2—C3—C4	-0.2 (3)	C14-C15-C16-N3	0.0 (3)
C2—C3—C4—C5	-0.3 (3)	C20-C15-C16-N3	179.79 (19)
C3—C4—C5—C10	1.0 (3)	C14—C15—C16—C17	179.10 (19)
C3—C4—C5—C6	-179.1 (2)	C20-C15-C16-C17	-1.2 (3)
C4—C5—C6—N1	0.8 (3)	N3-C16-C17-C18	-179.9 (2)
C10-C5-C6-N1	-179.22 (19)	C15—C16—C17—C18	1.0 (3)
C4—C5—C6—C7	-179.12 (19)	C16-C17-C18-N4	-0.2 (3)
C10-C5-C6-C7	0.8 (3)	C16-C17-C18-C19	179.12 (19)
N1—C6—C7—C8	179.3 (2)	C12-C11-C20-N4	179.5 (2)
C5—C6—C7—C8	-0.7 (3)	C12-C11-C20-C15	-0.9 (3)
C6—C7—C8—N2	0.3 (3)	C14—C15—C20—N4	-179.74 (18)
C6—C7—C8—C9	-179.5 (2)	C16-C15-C20-N4	0.5 (3)
C2-C1-C10-N2	-179.89 (19)	C14—C15—C20—C11	0.7 (3)
C2-C1-C10-C5	0.8 (3)	C16—C15—C20—C11	-179.10 (19)
C4—C5—C10—N2	179.44 (18)	C7—C8—N2—C10	0.1 (3)
C6—C5—C10—N2	-0.5 (3)	C9—C8—N2—C10	179.83 (18)
C4—C5—C10—C1	-1.3 (3)	C1C10N2C8	-179.24 (19)
C6—C5—C10—C1	178.79 (19)	C5-C10-N2-C8	0.1 (3)
C20-C11-C12-C13	0.8 (3)	C17-C18-N4-C20	-0.5 (3)
C11—C12—C13—C14	-0.4 (3)	C19—C18—N4—C20	-179.86 (18)
C12—C13—C14—C15	0.1 (3)	C11—C20—N4—C18	179.95 (19)
C13-C14-C15-C20	-0.2 (3)	C15-C20-N4-C18	0.3 (3)

Hydrogen-bond geometry (Å, °)

D—II	$\Pi^{\dots}A$	$D^{\cdot\cdot\cdot}A$	D—H···A
0.89 (3)	2.16 (3)	2.981 (3)	154 (3)
0.88 (3)	2.26 (3)	3.049 (3)	149 (3)
0.88 (3)	2.58 (3)	3.374 (3)	151 (3)
0.88 (4)	1.61 (4)	2.485 (3)	177 (5)
0.95 (3)	1.88 (3)	2.819 (3)	172 (3)
0.90 (3)	2.03 (3)	2.902 (3)	163 (3)
0.87 (3)	2.54 (3)	3.177 (3)	132 (3)
0.87 (3)	2.20 (3)	3.034 (3)	162 (3)
0.90 (3)	1.87 (3)	2.753 (3)	169 (3)
0.94 (4)	1.58 (4)	2.523 (3)	174 (5)
0.84 (4)	1.91 (4)	2.736 (3)	169 (4)
0.81 (4)	1.98 (4)	2.783 (3)	178 (5)
0.89 (4)	1.81 (4)	2.695 (3)	175 (3)
0.83 (4)	1.93 (4)	2.745 (3)	169 (4)
0.82 (4)	2.04 (4)	2.843 (3)	167 (5)
	$\begin{array}{c} 0.89 \ (3) \\ 0.88 \ (3) \\ 0.88 \ (3) \\ 0.88 \ (4) \\ 0.95 \ (3) \\ 0.90 \ (3) \\ 0.87 \ (3) \\ 0.90 \ (3) \\ 0.90 \ (3) \\ 0.90 \ (3) \\ 0.94 \ (4) \\ 0.84 \ (4) \\ 0.81 \ (4) \\ 0.89 \ (4) \\ 0.83 \ (4) \\ 0.82 \ (4) \end{array}$	D1111 $0.89(3)$ $2.16(3)$ $0.88(3)$ $2.26(3)$ $0.88(3)$ $2.58(3)$ $0.88(4)$ $1.61(4)$ $0.95(3)$ $1.88(3)$ $0.90(3)$ $2.03(3)$ $0.87(3)$ $2.54(3)$ $0.87(3)$ $2.20(3)$ $0.90(3)$ $1.87(3)$ $0.94(4)$ $1.58(4)$ $0.84(4)$ $1.91(4)$ $0.81(4)$ $1.98(4)$ $0.83(4)$ $1.93(4)$ $0.82(4)$ $2.04(4)$	$D=11$ $11^{\circ}A$ $D^{\circ}A$ $0.89(3)$ $2.16(3)$ $2.981(3)$ $0.88(3)$ $2.26(3)$ $3.049(3)$ $0.88(3)$ $2.58(3)$ $3.374(3)$ $0.88(4)$ $1.61(4)$ $2.485(3)$ $0.95(3)$ $1.88(3)$ $2.819(3)$ $0.90(3)$ $2.03(3)$ $2.902(3)$ $0.87(3)$ $2.54(3)$ $3.177(3)$ $0.87(3)$ $2.20(3)$ $3.034(3)$ $0.90(3)$ $1.87(3)$ $2.753(3)$ $0.94(4)$ $1.58(4)$ $2.523(3)$ $0.84(4)$ $1.91(4)$ $2.736(3)$ $0.81(4)$ $1.98(4)$ $2.783(3)$ $0.89(4)$ $1.81(4)$ $2.695(3)$ $0.83(4)$ $1.93(4)$ $2.745(3)$ $0.82(4)$ $2.04(4)$ $2.843(3)$

011—H11C…O7	0.85 (4)	1.94 (4)	2.787 (3)	172 (3)
O12—H12B···O3 ^{vii}	0.86 (4)	1.98 (4)	2.823 (3)	166 (4)
O12—H12C···O11 ⁱⁱ	0.92 (4)	1.90 (4)	2.823 (3)	177 (4)
Symmetry codes: (i) - <i>x</i> -1, - <i>y</i> , - <i>z</i> +1; (ii) <i>x</i> -1, <i>y</i> +1, <i>z</i>	z; (iii) x, y+1, z; (iv) –	x, -y+1, -z; (v) -x, -	-y, -z+1; (vi) -x, -y,	-z; (vii) x-1, y, z.

Fig. 1

